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ABSTRACT

The objective of this study was to compare and
contrast two techniques ofmodeling mortality in a
30 bed multi-disciplinary ICU; neural networks
and logistic regression. Fifteen physiological
variables were recorded on day 3 for 422
consecutive patients whose duration of stay was
over 72 hours. Two separate models were built
using each technique. First, logistic and neural
network models were constructed on the complete
422 patient dataset and discrimination was
compared Second, the database was randomly
divided into a 284 patient developmental dataset
and a 138 patient validation dataset. The
developmental dataset was used to construct
logistic and neural net models and the predictive
power of these models was verified on the
validation dataset. On the complete dataset, the
neural network clearly outperformed the logistic
model (sensitivity and specificity of I and .997 vs.
.525 and .966, area under ROC curve .9993 vs.
.9259), while both performed equally well on the
validation dataset (area under ROC of .82). The
excellent performance of the neural net on the
complete dataset reveals that the problem is
classifiable. Since our dataset only contained 40
mortality events, it is highly likely that the
validation dataset was not representative of the
developmental dataset, which led to a decreased
predictive performance by both the neural net and
the logistic regression models. Theoretically, given
an extensive dataset, the neural network should be
able to perform mortality prediction with a
sensitivity and a specificity approaching 95Y.
Clinically, this would be an extremely important
achievement. In future trials, we intend to
investigate the performance of an application-
specific, state ofthe art neural network on a more
representative, comprehensive prospective patient
database.

ROC = receiver operating characteristic

INTRODUCTION

Today, it is common practice to assign a
severity-of-illness score to a patient upon entry into
the intensive care unit (ICU). Common ICU
scoring systems include the Acute Physiology and
Chronic Health Evaluation (APACHE), the
Mortality Probability Models (MPMs), the
Simplified Acute Physiology Score (SAPS) and the
Pediatric Risk of Mortality (PRISM) scoring
system 11].

The scoring strategies for each of these
systms differ marely, but all combine measures
of current physiological status with various
preexisting risk factors to produce a surrogate
measure of risk or disease severity. This surrogate
measure can then be used as a tool to aid in quality
assurance, resource allocation, clinical decision
making, the evaluation of new therapies and
outcome prediction [1,2,31.

In the APACHE and MPM approach to
predicting outcomes, the day 1 risk factors
identified by each model are entered into a logistic
regression equation which then produces a
predicted probability of mortality. These logistic
regression models usually perform very well when
predicting the expected mortality experience of an
ICU but fall short of clinical usfulness when
predicting mortality of the individual patient [2,4].

Recent research has shown that events
occurring after ICU admission are more useful
predictors of outcomes than ICU admission status
[4]. It has also been shown that if the APACHE II
scores remain high in the face of continued
maximal intervention, fatal outcome can be
predicted [5]. These studies indicate that a scoring
system enacted some time after admission should
have a better predictive performance th a scoring
system enacted at admission.

Some researchers believe that
understanding the patterns that are assiated with
survival or death may require the use of alternative
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mathematical approaches, such as set theory or
fuzzy logic, which may ultimately be more fruitful
than further attempts at refining existing systems
[5,61.

Alternative techniques such as nonlinear
discrctc neural networks, have recently begun to be
applied to some classical medical problems. These
techniques are derived from the engineering
disciplines of pattern recognition and signals
processing and arc extremely promising because
they offer the potential for ever-improving
performance through dynaniic learning 171.

A neural network trained on 351 patients
with a high likelihood of myocardial infarction
outperformed emergency room physicians when
presented with 331 new cases of patients
presenting with anterior chest pain. The physicians
diagnosed myocardial infarction with a sensitivity
and specificity of 77% and 84% respectively,
whereas the neural network performed with a
sensitivity and specificity of 97.2% and 96.2% [81.

Neural networks have outperformed
clinicians on the diagnosis of hepatic masses [91,
pulmonary emboli 1101, and breast tumors 1111.
Artificial neural networks have also shown their
potential usefulness in the ICU by predicting the
length of ICU stays after cardiac surgery 1121.

The purpose of this study was to compare
and contrast the performance of a relatively simple
back-propagation, associative-learning neural
network with a classical multivariate logistic
regression approach to predicting ICU mortality
based on day 3 physiology scores.

METHODS

Patient Selection.

During a six month period from August 5,
1991 to February 5, 1992, 614 patients were
admitted to the 30 bed multi-disciplinary adult
critical care unit. The only entry criterion for this
study was a duration of stay greater than 72 hours.
Four hundred and twenty-two patients met this
criterion and were therefore eligible.

Data Collection

Fifteen variables were recorded daily for
the duration of stay for each study entrant. These
variables were identified from the literature 1131
and from clinical experience. They were; presence
of acute renal failure, packed cell volume, heart
rate, F102, serum sodium, PaO2, pH, respiratory

rate, systolic and diastolic blood pressures, serum
potassium, temperature, white blood cell count,
serum creatinine and the Glasgow coma score. The
definition and recording of all variables was
consistent with the methods outlined for data
collection for the APACHE II scoring system 1131.

The outcome of interest was ICU
mortality in patients with a duration of stay greater
than 72 hours.

During the period of the study, the
variables were abstracted from patient records and
stored in a central codebook. At the conclusion of
the study, the codebook was entered into a
spreadsheet program and then transferred into PC
SAS® version 6.041.
Database Validation

Primary data integrity was verified in PC
SAS® with algorithms written to filter out
biological impossibilities and obvious data entry
transpositions. Any values in coniflict with the
screening filters were re-entered directly from the
study codebook.

Secondary validation was carried out by
miiatch-merging the study database with a readily
available XENIX based ICU managenient
information system (MIS). This MIS database
allowed validation of date of birth, ICU entry date,
ICU discharge date and ICU discharge status.
Since the MIS database is utilized for billing
purposes, its entries are double-verified and seldom
in error. Conflicts with the study database were
resolved by accepting the MIS database as correct.

Primary and secondary error detection
rates were then compared as a means to increase
confidence in data integrity.

Scalc Selection

Variables such as heart rate can convey
different information about clinical interventions,
outcomes and risks dependent upon the degree of
elevation or depression above or below the normal
range. For this reason, all variables except serum
creatinine, presence of acute renal failure and the
Glasgow coma score were separated into high or
low distributions about the median. This resulted
in a total of 27 variables.

1PC SAS® version 6.04, SAS Institute hIc., SAS Circle,
PO Box 8000,Cary, NC, 27512-8000, IJ.S.A.
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In order to present the variables to the
neural network, scaling was required. Each high or
low distribution variable was non-parametrically
transformed to the z-scale. All 27 z-transformed
variables were presented to the neural network and
the logistic model to maintain consistency.

Logistic Regression

Logistic regrcssion was performed using
PROC LOGIST, PC SAS(®, version 6.04 [141.
Variables were considered as candidates for
inclusion in the model based on a univariate
logistic regression p-value c 0.25. [151. A
multiple-step backward model selection method
was used and variables were removed from the
model if significance fell above a p-value of 0.10.
After the final model was evaluated, first order
interaction terms were assessed.

Neural Network

A commercially available back-
propagation, associative-learning neural network
was used for this simulation2. All 27 variables
were presented to a 3 layered network with 27
input nodes, 18 hidden nodes and I output node. A
logistic activation function was used and the output
node generated a probability of mortality ranging
betweenO and 1.

Through an error-minimization technique
known as back-propagation, the neural network
optimizes weights between nodes such that
important patterns between variables are
recognized.

Comparisons
The performance of the neural network

and the logistic model were compared under two
different conditions. First the neural network and
the logistic regression techniques were exposed to
the complete database. Their ability to discriminate
between patients who lived or died was then
compared.

Second, a developmental and validation
subset were randomly selected from the complete
dataset. The developmental dataset contained 284
patients and was used to create a new logistic
model and a new neural network model. The two
models were then rated on their ability to
discriminate between patients who lived or died in

2NeuroShellTM,Ward Systems group, Inc., 245 W.
Patrick St., Frederick, Ml) 21701, U.S.A.

the validation dataset. to which they had never
been exposed.

Discrimination was assessed using the
arca under the recciver operating charactcristic
(ROC) curve of each model [161. Performancc was
also assessed by comparing the sensitivity and
specificity of the approaches at the arbitrary
classification threshold of 0.5.

RESULTS

Patient Population

The average age of the study subjects was
61 years and the average duration of ICU stay was
7.3 days. For the period of the study, the average
day I APACHE II score was 25.3. The study
population experienced a 9.5% mortality rate.

Database Validation

Primary validation revealed a coding error
rate of 2.1 % and independent secondary validation
against the MIS database revealed an error rate of
2.4%. Comparison of study database errors against
codebook values did not reveal any obvious
transposition errors in the codebook. Only 0.2% of
values were missing due to initial failure to
perform laboratory tests at bedside.

Logistic Regression

Complete Dataset

The final model contained seven
significant physiological variables. They were;
presence of acute renal failure (ARF), high serum
sodium, high pH, high diastolic blood pressure
(DBP), the Glasgow coma score (GCS), high
PaCO2,and low serum sodium (see table 1).
Table 1 L SE OR n
Intercept -1.6136 0.98 0.199 0.101
ARE 2.3518 0.59 10.50 0.000
Hi Na 0.9741 0.28 2.648 0.000
HipH 0.9659 0.39 2.627 0.014
Hi DBP -1.1326 0.38 0.322 0.003
GCS -0.2390 0.06 0.787 (.0((
Hi PaCO9 -0.8835 0.49 0.413 0.076
Low Na 1.6940 0.40 5.441 0.000

f-regression parameter estimate, SE=standard error of
regression parameter, OR-odds ratio, p= p-value

At a classification threshold of 0.5, the
logistic regression model performed with a
sensitivity of .525 and a specificity of .966. The
positive predictive valule was .618 and the negative
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predictive value was .951. The area under the ROC
curve was .9259.

Validation Dataset

The developmental dataset of 284 patients
produced a final model containing seven different
significant variables. The seven variables were;
high serum sodium, high diastolic blood pressure,
GCS, high PaCO2, low serum sodium, low serum
potassium, and low temperature (see table 2).

Table 2 SE OR p
Hi Na 1.2876 0.34 3.624 0.0(X)
Hi DBP -1.8092 0.47 0.164 0.000
GCS -0.2357 0.06 0.790 0.000
Hi PaCO2 -1.0222 0.50 0.360 0.042
Low Na 1.8762 0.64 6.529 0.003
Low K 2.0746 0.80 7.961 0.009
Low Temp 0.4771 0.22 1.611 0.029

At a classification threshold of 0.5, this
model performed with a sensitivity of .133 and a
specificity of .976. The positive predictive value
was .40( and the negative predictive value was
.902. The area under the ROC curve was .8320.

Neural Network

Complete Dataset

The network converged on a solution
after 15,837,750 iterations. This took 17:10:43
hours on a 27 MHz- 386.

At a classification threshold of 0.5, the
ncural network performed with a sensitivity of 1.0
and a specificity of .997. The positive predictive
value was .976 and the negative predictive value
was 1.(0. The area under the ROC curve was .9993.

Validation Dataset

Using the 284 patient developmental
database, the network converged on the optimum
predictive solution after 20,300 iterations, which
took 17:21 minutes on a 27 MHz 386.

At a classification threshold of 0.5, the
neural network classified the 138 patient validation
database with a sensitivity of .267 and a specificity
of .976. The positive predictive value was .571 and
the negative predictive value was .916. The area
under the ROC curve was .8178.

DISCUSSION

Back-propagation neural networks have
traditionally excelled at classification (pattern
recognition) problems. They are most useful in

situations where the relationship between the input
and the output is nonlinear and training data are
abundant 1171.

On the complete dataset, the back-
propagation network clearly outperforms logistic
regression with respect to the classification of
mortality and survivability (sensitivity and
specificity of 1.0 and .997 verses .525 and .966).

With the neural network performing with
an area under the ROC curve of .9993 and only
one misclassified event, we can conclude that the
15 recorded day 3 physiological variables
adequately describe. the mortality patterns
experienced over the period of the study.

Baxt's neural network predicted
myocardial infarction bv placing diagnostic
importance on clinical variables that have not
previously been shown to be highly predictive for
infarction 1181. Since the etiology of mortality is
much more complex than the etiology of infarction,
and since discrimination was so successfild with
our neural network, it suggests that patterns and
predictors of mortality are being detectcd that were
not detected using the traditional logistic
regression approach.

When 2/3 of the complete dataset was
used for model building and 1/3 for validation, the
overall predictive performance of the two
approaches was identical (area under ROC = .82).
The neural network was more sensitive over the
range of decision thresholds while the logistic
model was more specific.

Performance of any predictivc model on a
validation dataset depends on how representative
the validation cases are of the developmental cases
and on how well the model can classify the
developmental dataset. Theoretically, if the
validation dataset is tmly representative of the
developmental dataset, then the predictive
performance will approach the level of
developmental classification.

If the neural network were exposed to
more cases, in the form of a larger dataset, there is
no reason to suspect that a similar level of
classification would not occur. If this dataset were
extensive enough to cover most patterns of
mortality, then a predictive sensitivity and
specifilcity of over 95% could reasonably be
expected.
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Clinically this would be an extremely
important achievement. Improved predictive
performance would enhance quality assurance,
resource allocation, and the evaluation of new
therapies. With a sufficiently high predictive
performance, the neural network would also be an
unprecedented ancillary aid in clinical decision
making at the individual level.

Primary research in neural networks is a
dynamic and rapidly progressive field. We intend
to investigate the performance of an application-
specific, state of the art neural network on a more
representative, comprehensive prospective patient
databaseC.
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